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Micro-pulse lidar (MPL) systems are small, autonomous, eye-safe lidars used for
continuous observations of the vertical distribution of cloud and aerosol layers. Since the
construction of the first MPL in 1993, procedures have been developed to correct for various
instrument effects present in MPL signals. The primary instrument effects include afterpulse,
laser-detector cross-talk, and overlap, poor near-range (< 6 km) focusing. The accurate
correction of both afterpulse and overlap effects are required to study both clouds and aerosols.
Furthermore, the outgoing energy of the laser pulses and the statistical uncertainty of the MPL
detector must also be correctly determined in order to assess the accuracy of MPL observations.

The MPL-Net project at GSFC coordinates the deployment of MPL instruments to sites
co-located with AERONET sunphotometers. The raw MPL data is downloaded to a central
archive and processed to correct for the various instrument effects discussed above. A paper that
describes the techniques used to correct the raw MPL data has been accepted for publication by
the Journal of Atmospheric and Oceanic Technology. However, the paper did not discuss the net
uncertainty in the corrected MPL-Net data product.

This new paper discusses the uncertainties in the determination of the afterpulse, overlap,
pulse energy, detector noise, and all remaining quantities affecting measured MPL signals. The
uncertainties are propagated through the entire correction process to give a net uncertainty on the
final corrected MPL-Net data product. The results show that in the near range, the overlap
uncertainty dominates. At altitudes above the overlap region, the dominant source of uncertainty
is caused by uncertainty in the pulse energy. However, if the laser energy is low, then during
mid-day, high solar background levels can significantly reduce the signal-to-noise of the
detector. In such a case, the statistical uncertainty of the detector count rate becomes dominant at
altitudes above the overlap region.
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Abstract

Micro-pulse lidar (MPL) systems are small, autonomous, eye-safe lidars used for
continuous observations of the vertical distribution of cloud and aerosol layers. Since the
construction of the first MPL in 1993, procedures have been developed to correct for various
instrument effects present in MPL signals. The primary instrument effects include afterpulse,
llaser-detector cross-talk, and overlap, poor ne'ar-range (< 6 km) focusing. The accurate
correction of both afterpulse and overlap effects are required to study both clouds and aerosols.
Furthermore, the outgoing energy of the laser pulses and the statistical uncertainty of the MPL
detector must also be correctly determined in order to assess the accuracy of MPL observations.
The uncertainties associated with the afterpulse, overlap, pulse energy, detector noise, and all
remaining quantities affecting measured MPL signals, are determined in this study. The
uncertainties are propagated through the entire MPL correction process to give a net uncertainty
on the final corrected MPL signal. The results show that in the near range, the overlap
uncertainty dominates. At altitudes above the overlap region, the dominant source of uncertainty
is caused by uncertainty in the pulse energy. However, if the laser energy is low, then during
mid-day, high solar background levels can significantly reduce the signal-to-noise of the

detector. In such a case, the statistical uncertainty of the detector count rate becomes dominant at

altitudes above the overlap region.



1. Introduction

During the 1990s technological advances made possible the development of compact,
autonomous, and eye-safe lidar systems. The Micro-pulse Lidar (MPL) was the first of this new
class of instruments (Spinhirne, 1993; Spinhirne et al., 1995). The MPL has since been used
successfully within the Atmospheric Radiation Measurement (ARM) program (Stokes and
Schwartz 1994), and also in several independent ﬁeld experiments around the world (Welton et
al., 2000; Peppler et al., 2000; Voss et al., 2001; Welton et al., 2001). An overview of the MPL
instruments operated within the ARM program is discussed by Campbell et al. (2001),
henceforth referred to as CA.

Welton et al. (2000) and CA discuss the nature of the measured MPL signal with respect
to the lidar equation (Fernald et al., 1972). The measured signals are shown to differ from the
theoretical lidar equation because of specific effects caused by the MPL transmit/receive optical
design. Both Welton et al. and CA develop correction factors for each instrument-related effect,
and present algorithms that convert the measured signal into a form that complies with the lidar
equation.

The two algorithms differ in their approach to the correction process. The earlier
algorithm by Welton et al. determined the correction factors by forcing measured signals to
conform to a modeled lidar signal containing only molecular scattering. However, this method is
only useful when measurements can be conducted in regions free of aerosols and clouds, such as
on mountain-tops. The CA algorithm is not dependent upon this condition, and is more
applicable to most field conditions. Also, the CA algorithm is more rigorous in its construction,
and is better suited to understanding the uncertainties involved in the correction process. For

these reasons, an adapted version of the CA algorithm was used by Welton et al. (2001) for



processing MPL data from a later field experiment. The authors intend to utilize the CA

algorithm for future studies.
This paper presents a study of the uncertainties associated with the correction factors
discussed by CA. The uncertainties are propagated through the CA algorithm to yield a net

uncertainty in the final converted MPL signal.

2. The MPL Signal
This section describes the terms that are present in the lidar equation. Figure 1 shows an
example of MPL observed photon count rates during both day and night. The MPL count rate is

presented as Equation 2 in CA, and is rewritten here as

CEO(r) By () + B (D] T\ (N T (r) . Am(E) | B,, )
D(P )rZ D(Praw) D(Pfaw)

raw

P (r)=

where P_(r) is the measured signal (photoelectrons/psec per shot) at range r, C is a calibration
value, E is the pulse energy in pJ, D(P,,,) is the detector dead-time factor, O(r) is the overlap
function, A(r,E) is the detector afterpulse (photoelectrons/pisec per shot), and B is the solar
background signal (photoelectrons/usec per shot).
Normalized Relative Backscatter Signals

The backscatter cross-section terms, B (r) and Br), in Eq. (1) are due to molecules and
particles, respectively. Sources of particle backscatter include clouds, aerosols, or a mixture of

both. The transmission terms, T,%(r) and T,*(r), are given by



T (r)= exp[—ZJ.(:o](r’)dr’] ' (2)

where o(r) is the extinction coefficient, and the i subscript denotes either a molecular or particle
quantity. The integral of the extinction coefficient from the MPL to any range is the optical depth
over that distance. The transmission terms are squared to account for the two-way path of the
laser pulses.

The aim of the CA correction algorithm is to remove all instrument parameters from Eq.
(1) except C, and to subtract B. The signal resulting from the correction process is called the

normalized-relative-backscatter signal, henceforth referred to as the NRB signal. The NRB

signal, Pygs(r), is given by
Prs (1) = C[Bu (D) + Bo(N] T (N T2 (r) 3)

The NRB signal is significant because it is dependent on atmospheric parameters and only one
instrument parameter, C. Techniques to determine C using measured NRB signals are well
understood and are independent of the lidar system (Spinhirne et al.,1980; Welton et al., 2001).

Detector Dead-time Corrections

The first step in processing the MPL signals is to correct for detector dead-time effects.
Dead-time effects are caused by saturation of the detector signals at high count rates and are
discussed in detail by CA. Here we attempt to quantify the uncertainty in the dead-time
correction based on information provided by the manufacturer and others with expertise in the
field of photon counting detectors (X. Sun, personal communication).

The dead-time factor is determined using the following equation,



)=—2% (4)

where ¥ is a calibrated source signal, A is the total attenuation of the optical path from the source

to the detector, and P_,, is the observed photon count rate. The uncertainty in D(Pg,) is given by,

5D(P,,) = D(P,.) (%)2 +(%)2 +(5PPW )2 ©)

raw

where &y and 8P, are the uncertainties in the source and measured signals, respectively, and are
determined using Poisson statistics. 8A is the uncertainty in the attenuation term. The
uncertainties in each signal term are estimated assuming a per second count rate with no time
average. The source uncertainty was well below 1% and was negligible. The attenuation
uncertainty was ignored in order to assess the uncertainty in the dead-time caused by fluctuations
in the source and measured signal.

Figure 2a shows a plot of D(P,,,) versus the measured count rate, P,. Figure 2b shows
SD(P,,.)/D(P,,,) versus D(P_,). The dead-time uncertainty is negligible at high count rates but
approaches 1% at low count rates because the detector uncertainty is highest when the count rate
is low. However, the dead-time factor itself is only significant for values above 1.01, the level at
which the measured signals are affected by at least 1% due to dead-time effects. At dead-time
factors above 1.01, the dead-time uncertainty is less than 0.3%. As a result, the source and
measured signal uncertainties contribute very little to the overall dead-time uncertainty. Instead,

the uncertainty in the dead-time factor is dependent almost entirely on the uncertainty in the



attenuation optic. The attenuation uncertainty is not know at this time. For the purposes of this
study, we will consider this to be small and the overall dead-time uncertainty to be negligible.

The dead-time corrected lidar signal, P(r), is given by

p(r) = EOOPw) | a; £y 4+ B 6)
r .

Using Poisson statistics, the uncertainty in P(r) is
P(r)
oP(r)=,—+ 7
(r) N (N

where N is the number of shots during the acquisition of the signal and is dependent on the data
rate. N is typically either 75,000 for a 30 second data rate, or 150,000 for a 1 minute data rate.
Figure 1 shows the uncertainty in the observed count rate. Also, the error in B is given by Eq.
(7), but is done using the signal returns from 45 to 55 km as discussed by CA.

Uncertainties in the Laser Energy

A portion of the outgoing laser pulse energy is measured in real-time by another detector,
the energy monitor. A calibration table is used to calculate the actual pulse energy from the
energy fnonitor value. The relationship between the two is linear. The calibration table does not
have to be very accurate in terms of generating the true output energy. Instead, it only has to
provide an output energy that is proportional to the actual value because any constant offset in
the energy term can be passed to the calibration value, C. Henceforth, the term energy monitor

value refers to the calibrated pulse energy, not the actual pulse energy.



The average energy monitor value during the measurement period (typically 1 minute) is
stored in the MPL data file. Changes in the energy monitor value from pulse to pulse during the
measurement period will produce uncertainty in the energy value. If the energy uncertainty
becomes high it can dominate the uncertainty in the MPL signal. Therefore, the energy monitor
value must be carefully considered.

The energy monitor value can change from pulse to pulse due to changes in the laser
power setting, degradation of the laser diode over time, changes in beam quality output from the
laser head, and statistical fluctuations in the energy monitor. The laser power setting is fixed
during operation of the MPL. Therefore, the diode power will only drop if the laser system
begins to degrade, however this takes place over a long time span and will not produce pulse to
pulse changes in the energy unless a catastrophic failure occurs. The laser head components may
also degrade with time, but again this will not produce significant pulse to pulse changes unless
the laser head breaks. The beam quality may be affected by environmental changes such as
increase or decrease in temperature and humidity of the laser components. This could occur over
much smaller time frames and is considered a possible source of uncertainty. Statistical
fluctuations in the energy monitor are also considered a source of uncertainty. In addition,
temperature changes on the energy monitor produce another source of uncertainty because of
thermal noise in the detector.

The uncertainty in the energy monitor value was determined using the following
procedure. Data from five MPL systems were collected. Table 1 shows the average energy,
percent energy fluctuation, average temperature, and percent temperature fluctuation of each
MPL system over M number of minutes of data. The energy monitor values range from 3.71 to

7.64 uJ and the temperature values range from 26.93° to 30.55° C between the MPL systems



picked for this study. MPL systems have varying degrees of laser quality due to age, and this
range of energy covers the typical span found in most MPL systems. Also, the temperature range
covers the typical span encountered during most MPL operations. Figure 3 shows the percent
fluctuation in energy versus the percent fluctuation in temperature for the five MPL systems. The
data show that when the change in temperature is low, the percent fluctuation in the energy
monitor value is approximately 1% or less. When fhe change in temperature is low, the primary
source of energy change is simply statistical fluctuation within the detector. Typical MPL data
acquisition rates are 1 minute or less and temperature changes are negligible over such short time
spans unless there is a noticeable problem with the instrument. Therefore, under normal
conditions the uncertainty in the energy monitor value is set constant to 1% for all MPL systems.
However, if the data rate is increased to several minutes or more, then temperature fluctuations

affecting the energy uncertainty should be considered.

3. Afterpulse Corrections

The next step in MPL processing is the afterpulse correction. A complete discussion of
afterpulse is given by CA, a brief description is given here. The initial firing of each laser pulse
is seen by the detector because the MPL shares the same transmit and receive path. The initial
pulse on the detector is large and creates a false signal on the detector as the photoelectrons are
bled off. This false sighal must be removed from the measured signals by pre-determining
A(r,E), and then subtracting it from P(r). This process is referred to as afterpulse correction and
is discussed here. A(r,E) is determined by covering the MPL and preventing signals from being
transmitted. In this arrangement, the first term on the right-hand-side (RHS) of Eq. (6) is zero,

and the detector only measures the afterpulse signal and background. The background is only



equal to the detector dark noise with the lid on. The afterpulse is dependent upon the output

energy and according to CA is written as

A(r,E))=E, A\(r) (8)

where E, is the energy monitor value during the afterpulse measurement.
Ax(7) is referred to as the normalized afterpulse. In order to measure Ay(r), the dark noise

is subtracted from P(r) and the result is divided by E,. Ay(r) is given by

A(r) _P(N-B, ©
EA EA

AN(r) =

where B, is the detector dark noise. This measurement is performed for a certain period of time
(typically about 10 minutes). Ay(r) is the average of the signals over the time span, and the

afterpulse uncertainty, dA(r), is

2 2
§Ay(r) = Ay(r) \ﬁp‘(s:;(_')B]z + (55/* ) (10)

where 8E, is the uncertainty in the outgoing energy during the afterpulse measurement. Figure 4a
shows a typical afterpulse function versus range, and Figure 4b shows the afterpulse uncertainty.
Signals measured during regular operations are corrected by subtracting EAy(r) from

[P(r)-B] and then dividing by E. However, B and E are the values taken during the regular



measurement, not the afterpulse measurement. The normalized-afterpulse-corrected signal,

Pya(7), is given by

P(r) = B=[EA(n)] _ O(r)Pys(r) 1n
E r’

Poa(r) =

4. Overlap Corrections

The next step in MPL processing is the overlap correction. A complete discussion of
overlap is given by CA, a brief description is given here. The overlap function accounts for
signal loss in the near-range due to poor receiver efficiency of the telescope and associated optics
in this region. The overlap problem must be corrected in order to analyze boundary layer
aerosols. The CA overlap correction process involves acquiring MPL data while the instrument
is oriented horizontally. In this arrangement, both 3 and o are constant with range. Using Eq. (3)

and multiplying Eq. (11) by 7 gives the resulting horizontal MPL signal

P,(r) = CBO(r)exp[—20r] (12)

The natural logarithm of Eq. (12) is

In[P, ()] = In[CB] + In[O(r)] - 207 (13)

At distances greater than the overlap range, O(r) is equal to one and the second term on the RHS

of Eq. (13) is zero. In this region, In[Py,(r)] is linear with respect to range. A least squares linear

10



fit is applied to N data points from r,, to a maximum range, 7,,. The maximum range is typically

about 2 km greater than r,. The resulting linear fit is given by

In[Px(r)] = In[CB] - 207 (14)

where the y-intercept is In[CB] and the slope is —26. The overlap function is calculated using the

following equation

RO,
Pe(r) °

O(r)= (15)
1 r2r,

where P(r) is simply the exponential of the fit line (and is equal to Pygg(r)). The uncertainty in

the overlap is given by

sp.n] [sp.nT
50(r)=0 H ; 16
(r) (T)J[ B,(r) ] +[ P.(r) ] (16)

The first term under the square root in Eq. (16) is uncertainty in the signal, and is given

by

[51:“0)]2 _[8P] +88 +[ANDIE [ +[ES AT [8E, | an
Py (r) [P()~B-E, Ay(D] E,

11



where E, is the energy monitor value during the overlap measurement. The second term under

the square root in Eq. (16) is uncertainty due to the fit process and is given by

|:6PF(r)}2 _ [5(013) ]2 N [5(6"13[—20"1)]2 (18)

P:(r) CcB exp[—2o07]

The fit uncertainty is a function of the uncertainties in both the y-intercept and slope obtained

~ during the fit. Standard error analysis is used to determine the uncertainties for both parameters.

First we define the following terms

X x \
Q:XZr‘,z-( r;) (19)

i=1

and

X 2
s? = -)—(—]_—2—~Z(ln[PNA(r)] ~In[P:(")) (20)

i=1

The uncertainty in the y-intercept is then given by

5(in[CB)= | irf @1
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and the uncertainty in the slope is

2

R
5(-20)= X5 (22)

The results of Eq. (21) and Eq. (22) are then used to determine the uncertainty terms on the RHS

of Eq. (18). The equations are given by

[ emlcpl-a(aica)_ em[cn]) + (em[cm_ em[Cﬂ]~8(ln[Cﬂl))]

S(CB) _ i
cB 2671 @
and
Hexpl207) _ 520 (24)

exp[—2o0r]

The final overlap uncertainty is calculated using Eq. (16). Figure 5 shows a typical overlap
function and its uncertainty.

Signals measured during regular operations are overlap corrected by dividing Py,(r), Eq.
(11), by the pre-determined overlap, O(r). The resulting signal is termed the normalized-

afterpulse-overlap-corrected signal, Py,o(r), and is given by

P(r)- B—[EAy(D)]

_ E _ PNRB(I')
Puao(r) = o) =T (25)
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5. Normalized Relative Backscatter Signals
Pyuso(7) is simply the NRB signal divided by the range squared. The final step in the MPL

processing is to multiply Py,o(r) by 7. The result is the NRB signal and is given by

rz[P(r)-B—[EAN(r)]:!
E

Pae(r) = r* Puao(r) = o) (26)
The uncertainty in the NRB signal is given by
[6P()] + 8B +[Ax(NGE] +[ES Ay(n)] [5E]2 [500)]2
oP =P — _— 27
() ““(r)\j [P() - B-EA)] 2] o @

Figure 6a shows the NRB signal generated from the measured daytime signal in Figure 1.
Figure 6b shows the uncertainty in the daytime NRB values. Figures 6¢ and 6d show the night-
time NRB signal and its uncertainty for comparison. The night-time uncertainties are decreased

because of the lack of solar background, B.

6. Conclusion
Figure 7 displays NRB signals, and uncertainties, obtained during one full-day. The
boundary layer and two cirrus layers are both visible in the image. The reduction in NRB

uncertainty at high altitudes during the night is clearly shown. Also, the ability of the MPL to

14



detect the presence of moderate to thick cirrus layers at one-minute data rate during mid-day
(low signal-to-noise) is shown. During mid-day, NRB signal uncertainties in clear air regions
approach 100% at approximately 6 km. However, when cirrus is encountered the NRB signal
uncertainties drop considerably due to an increase in the signal-to-noise within the cloud.
However, detecting thin cirrus during daytime at one-minute data rates is difficult. This problem
can be overcome by averaging NRB signals over several minute periods.

In general, near the surface, the overlap uncertainty is the dominant source of uncertainty
in the NRB signal. At altitudes above the overlap region, the dominant source of uncertainty in
the NRB signal is typically due to uncertainty in the energy. However, during daytime B
increases and reduces the signal-to-noise, which causes 8Pygg(r) to increase accordingly.

Therefore, during the daytime B is also a large source of uncertainty at higher altitudes.
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Figure Captions
Figure 1. Example of MPL observed count rates (a). The uncertainty in the observed count rate

using Poisson statistics (b). Both day and night observations are shown.

Figure 2. The detector dead-time factor versus measured count rates (a). The fractional percent
uncertainty in the dead-time factor (b). The dead-time factor is only significant above 1.01, and

the uncertainties are below 0.3%.

Figure 3. Percent fluctuation in energy monitor values versus the percent fluctuation in

temperature for the five different MPL systems in Table 1.

Figure 4. A typical normalized afterpulse signal (a). The afterpulse percent uncertainty (b). The

afterpulse uncertainty is dominated by the uncertainty in the energy monitor value.

Figure S. A typical overlap function (a) and its fractional percent uncertainty (b).

Figure 6. The results of corrections to the day and night MPL count rates from Figure 1 are
shown. The daytime NRB signal and uncertainty are shown in 6a and 6b, respectively. The

night-time NRB signal and uncertainty are shown in 6¢ and 6d, respectively.

Figure 7. NRB signals obtained during a full day of MPL observations are shown in the upper

panel. The bottom panel shows the NRB fractional percent uncertainty.
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Table 1. Energy Uncertainty

MPL # Average % Fluctuation in Average % Fluctuation in  Samples (M)
Energy (ud) Energy Temperature (C°) Temperature
1 6.88 + 0.07 1.00 26.93 + 0.66 2.45 318
2 3.71 + 0.03 0.85 27.77 £ 0.09 0.33 1423
3 6.60 + 0.25 3.82 24.02 + 1.75 7.28 2823
4 7.64 + 0.12 1.57 30.55 + 0.89 2.92 1272
5 3.82 ¢ 0.12 3.23 28.43 + 1.69 5.93 1204
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GSFC STI PUBLIC DISCLOSURE EXPORT CONTROL CHECKLIST

The Export Control Office requests your assistance in assuring that your proposed disclosure of NASA scientific and technical information (STI)
complies with the Export Administration Regulations (EAR, 15 CFR 730-774) and the International Traffic In Arms Regulations (ITAR, 22 CFR
120-130). The NASA Export Control Program requires that every domestic and international presentation/publication of GSFC STI be reviewed
through the GSFC Export Control Office in accordance with the NASA Form 1676 NASA Scientific and Technical Document Availability
Authorization (DAA) process. Release of NASA information into a public forum may provide countries with interests adverse to the United States
with access to NASA technology. Failure to comply with the ITAR regulations and/or the Commerce Department regulations may subject you to
fines of up to $1 million and/or up to ten years imprisonment per violation. Completion of this checklist should minimize delays in approving most
requests for presentation/publication of NASA STL

Generally, the export of information pertaining to the design, development, production, manufacture, assembly, operation, repair, testing,
maintenance or modification of defense articles, i.e., space flight hardware, ground tracking systems, launch vehicles to include sounding rockets and
meteorological rockets, radiation hardened hardware and associated hardware and engineering units for these items are controlled by the State
Department under the ITAR. A complete listing ¢f items covered by the ITAR can be accessed at http://gsfc-bluenun. gsfe.nasa.
gov/export/regsitar.htm. The export of information with respect to ground based sensors, detectors, high-speed computers, and national security and
missile technology items are controlled by the U.S. Commerce Department under the EAR. If the information intended for release falls within the
above categories but otherwise fits into one or more of the following exemptions, the information may be released.

EXEMPTION I

If your information is already in the public domain in it's entirety through a non-NASA medium and/or through NASA release previously approved
by the Export Control Office, the information is exempt from further review. If the information falls into this category, you may attest that you are
using this exemption by signing below.

Signature Date

EXEMPTION HI

If your information pertains exclusively to the release of scientific data, i.e. data pertaining to studies of clouds, soil, vegetation, oceans, and planets,
without the disclosure of information pertaining to articles controlled by the ITAR or EAR, such as flight instruments, high speed computers, or
launch vehicles, the information is exempt from further review. If the information falls into this category, you may attest that you are using this
exemption by signing below.

7> - 1ol

Signature Date

EXEMPTION III

If your information falls into the areas of concern as referenced above, but is offered at a general purpose or high level, i.e. poster briefs and
overviews, where no specific information pertaining to ITAR or EAR controlled items is offered, the information is exempt from further review. If
the information falls into this category, you may attest that you are using this exemption by signing below.

Signature Date
EXEMPTION IV

If your information is not satisfied by the 3 excmptions stated above, the information may be released using exemption 125.4(b)(13) of the ITAR.
Use of this exemption is afforded only to agencies of the Federal Government and allows the release of ITAR controlled information into the public
domain. But the GSFC Export Control Office has determined that use of this exemption will be allowed only after we receive assurance that such
release is a responsible action. To this end, an internal guideline has been established pursuant to the use of this exemption: That the information
does not offer specific insight into design, design methodology, or design processes of an identified ITAR controlled item in sufficient detail (by
itself or in conjunction with other publications) to allow a potential adversary to replicate, exploit and/or defeat controlled U.S. technologies. All
signatures of approval on NASA Form 1676 expressly indicate concurrence with the responsible use of Exemption IV when Exemption 1V has been
cited by the author. If you determine that you have met this criteria, you may attest your determination by signing below, and the GSFC Export
Control Office will offer favorable consideration :oward approving your presentation/publication request under this special exemption.

Signature Date

If you do not satisfy the above exemptions, please contact the GSFC Export Control Office for further clarification on the releasability of your
information under the ITAR or EAR.
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